Автономная некоммерческая профессиональная образовательная организация «КАЛИНИНГРАДСКИЙ КОЛЛЕДЖ УПРАВЛЕНИЯ»

Утверждено Учебно-методическим советом Колледжа протокол заседания № 81 от 30.10.2025

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ЭЛЕМЕНТЫ ВЫСШЕЙ МАТЕМАТИКИ (ОП.01)

По специальности **09.02.13 «Интеграция решений с применением**

технологий искусственного интеллекта»

Квалификация «Специалист по работе с искусственным

интеллектом»

Форма обучения Очная

Лист согласования рабочей программы дисциплины

Рабочая программа дисциплины ОП.01 «Элементы высшей математики» разработана в соответствии с федеральным государственным образовательным стандартом среднего профессионального образования, утвержденным приказом Минпросвещения от 24.12.2024 № 1025 «Об утверждении федерального государственного образовательного стандарта среднего профессионального образования по специальности 09.02.13 Интеграция решений с применением технологий искусственного интеллекта.

Рабочая программа дисциплины рассмотрена и одобрена на заседании Учебно- методического совета колледжа, протокол № 81 от 30.10.2025г.

Регистрационный номер 08ИИ/25

- 1 Цели и задачи освоения дисциплины
- 2 Место дисциплины в структуре ОПОП
- 3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы
- 4 Объем, структура и содержание дисциплины в зачетных единицах с указанием количества академических/астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся.
- 5 Перечень образовательных (информационных) технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения, современных профессиональных баз данных и информационных справочных систем
- 6 Оценочные средства и методические материалы по итогам освоения дисциплины
- 7 Основная и дополнительная учебная литература, и электронные образовательные ресурсы, необходимые для освоения дисциплины
- 8 Дополнительные ресурсы информационно-телекоммуникационной сети «Интернет» необходимые для освоения дисциплины
- 9 Требования к минимальному материально-техническому обеспечению, необходимого для осуществления образовательного процесса по дисциплине

Приложение 1. Оценочные средства для проведения входного, текущего, рубежного контроля и промежуточной аттестации обучающихся по дисциплине и методические материалы по ее освоению

1. 1. Цели и задачи освоения дисциплины

Целями освоения дисциплины ОП.01 «Элементы высшей математики» являются: формирование у обучающихся прочных теоретических знаний и практических навыков в области важнейших разделов высшей математики, овладение основными понятиями, теоремами и методами математического анализа, линейной алгебры, аналитической геометрии, начала теории вероятности и статистики, развитие способности применять полученные знания для решения конкретных прикладных задач в своей будущей профессиональной деятельности, воспитание умения самостоятельно изучать литературу по математике и другим естественно-научным дисциплинам, требующим знания высшей математики, повышение уровня общей культуры и интеллектуальной готовности выпускников вуза к восприятию новых научных знаний и технологий.

Задачами освоения дисциплины «Элементы высшей математики» являются:

- 1. Формирование фундаментальных понятий: Изучение основ линейной алгебры, теории функций одной переменной, дифференциального исчисления, интегрального исчисления, элементов функционального анализа.
- 2. Развитие практических навыков: Овладение приемами вычислений пределов, производных, интегралов, решение уравнений и неравенств, построение графиков функций, использование матричных методов.
- 3. Применение полученных знаний в профессиональной деятельности: Освоение принципов построения математических моделей реальных процессов и явлений, применение методов оптимизации, приближенных расчетов, статистического анализа.
- 4. Подготовка к дальнейшему обучению: Создание базы для изучения специализированных курсов, использующих высшую математику (например, экономикоматематическое моделирование, теория вероятностей, статистика).

Программа составлена в соответствии с требованиями Федерального закона от 29.12.2012 № 273-ФЗ (ред. от 23.05.2025) «Об образовании в Российской Федерации», Приказа Министерства просвещения Российской Федерации от 24 августа 2022 г. № 762 «Порядок организации и осуществления образовательной деятельности по образовательным программам среднего профессионального образования», ФГОС СПО и учебным планом по специальности: 09.02.13 «Интеграция решений с применением технологий искусственного интеллекта».

2. Место дисциплины в структуре ППССЗ

Учебная дисциплина OП.01 Элементы высшей математики входит в общепрофессиональный цикл.

Изучается на втором курсе в третьем семестре на базе основного общего образования. Промежуточная аттестация проводится в форме экзамена.

В результате освоения дисциплины обучающийся должен:

уметь:

- применять современный математический инструментарий для решения практических задач;
- применять методику построения и анализа математических моделей для оценки состояния явлений и процессов в части математического анализа, линейной алгебры;

знать:

основы математического анализа, линейной алгебры и аналитической геометрии.

3. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Результатами освоения рабочей программы учебной дисциплины является овладение студентами следующими компетенциями:

- ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам.
- ОК 02. Использовать современные средства поиска, анализа и интерпретации информации, и информационные технологии для выполнения задач профессиональной деятельности.

Личностные результаты реализации программы воспитания

- —Осознавать себя гражданином России и защитником Отечества, выражать свою российскую идентичность в поликультурном и многоконфессиональном российском обществе, и современном мировом сообществе. Сознавать свое единство с народом России, с Российским государством, демонстрирующий ответственность за развитие страны. Проявлять готовность к защите Родины, способность аргументированно отстаивать суверенитет и достоинство народа России, сохранять и защищать историческую правду о Российском государстве.
- -Проявлять и демонстрировать уважение законных интересов и прав представителей различных этнокультурных, социальных, конфессиональных групп в российском обществе; национального достоинства, религиозных убеждений с учётом соблюдения необходимости обеспечения конституционных прав и свобод граждан. Понимать и деятельно выражать ценность межрелигиозного и межнационального согласия людей, граждан, народов в России. Выражать сопричастность к преумножению и трансляции культурных традиций и ценностей многонационального российского государства, включенный в общественные инициативы, направленные на их сохранение социальных перемен.
- -Демонстрировать готовность и способность вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения в профессиональной деятельности.
- Проявлять сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности.
- -Проявлять ценностное отношение к культуре и искусству, к культуре речи и культуре поведения, к красоте и гармонии.

4. Объем, структура и содержание дисциплины с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся.

4.1 Объем дисциплины

Таблица 1 – Трудоемкость дисциплины

Объем дисциплины	Всего акад. часов
Всего академических часов учебных занятий	82
В том числе:	
контактной работы обучающихся с преподавателем	78
по видам учебных занятий:	
занятий лекционного типа	24
занятия семинарского типа	50
Самостоятельная работа обучающихся:	4
Промежуточная аттестация – экзамен	4

4.2. Структура дисциплины

Таблица 2 – Структур дисциплины

Раздел дисциплины	Семестр	Неделя семестра	Всего	Виды учебной работы, включая самостоятельную работу обучающихся и трудоемкость (в часах ауд.)			Вид контроля*
T WOARN AND AND AND AND AND AND AND AND AND AN	1			Лекции	Практ. зан.	СРС	
Раздел 1. Математический анализ	3	1-6	24	8	16	-	Текущий контроль Рубежный контроль
Раздел 2. Линейная алгебра	3	7-12	24	8	16	-	Текущий контроль
Раздел 3. Математические модели и их применение	3	13-17	26	8	18		Текущий контроль
Экзамен	3	17	8	-	4	4	Промежуточная аттестация
Всего учебная нагрузка обучающихся			82	24	54	4	

4.3. Содержание дисциплины, структурированное по темам (разделам)

4.3.1.Теоретические занятия- лекции

Таблица 3 – Содержание лекционного курса

Наименование раздела (модуля) дисциплины, темы	Содержание	Кол-во часов	Форма проведения занятия	Оценочное средство
Раздел 1. Математический	й анализ	8		
Тема 1.1. Пределы и	Содержание		лекция-	Устный опрос
непрерывность функций	Определение предела функции в точке и на бесконечности.		визуализация	
	Свойства пределов.	2		
	Определение непрерывности функции. Примеры непрерывных и			
	разрывных функций.			
Тема 1.2. Производная и её	Содержание	4	лекция-	Устный опрос.

применение Определение производной и её геометрический смысл. Правила		визуализация	Рубежный
дифференцирования.			контроль
Применение производных: нахождение экстремумов, исследование			
функций. Частные производные.			1 7
Тема 1.3. Интегралы и их Содержание		лекция-	Устный опрос
применение Определение неопределённого и определённого интеграла.		визуализация	
Основные методы интегрирования (подстановка, интегрирование	2		
по частям). Применение интегралов для расчёта площадей, объёмов			
и физических величин.			
Раздел 2. Линейная алгебра	8		
Тема 2.1. Векторы и Содержание		лекция-	Устный опрос
операции над ними Определение вектора, скалярное произведение, длина вектора.	2	визуализация	
Операции с векторами: сложение, вычитание, умножение на число.			
Тема 2.2. Матрицы и Содержание			
системы линейных Определение матрицы, транспонирование, обратная матрица.	2		
уравнений Умножение матриц.	Z		
Решение систем линейных уравнений методом Гаусса.			
Тема 2.3. Сингулярное Содержание		лекция-	Устный опрос
разложение матриц (SVD) Основы разложения матрицы.	4	визуализация	_
Применение SVD для анализа данных и уменьшения размерности.			
Раздел 3. Математические модели и их применение	8		
Тема 3.1. Линейные Содержание		лекция-	Устный опрос
модели Построение и анализ линейных моделей.	4	визуализация	_
Пример использования линейных моделей в задачах предсказания.			
Тема 3.2. Нелинейные Содержание		лекция-	Устный опрос
модели Построение и анализ нелинейных моделей.	4	визуализация	
Применение нелинейных моделей в задачах предсказания.			
Всего:	24		

4.3.2. Занятия семинарского типаТаблица 4 – Содержание практического (семинарского) курса

Темы практических занятий	Кол-во часов	Форма проведения занятия	Оценочное средство
Раздел 1. Математический анализ	16		
Практическая работа №1. Вычисление пределов функций в точке и на	2	практическое занятие в	Устный опрос
бесконечности.	2	форме практикума.	
Практическая работа №2. Анализ непрерывности функций на интервале.	2	практическое занятие в	Устный опрос

		форме практикума.	
Практическая работа №3. Исследование функций с помощью производных	4	практическое занятие в	Устный опрос
нахождение экстремумов и точек перегиба).	4	форме практикума.	
Практическая работа №4. Применение частных производных в многомерных	2	практическое занятие в	Устный опрос
рункциях.	2	форме практикума.	
Практическая работа №5. Вычисление неопределённых интегралов с	2	практическое занятие в	Устный опрос
использованием метода подстановки.	2	форме практикума.	
Практическая работа №6. Вычисление определённых интегралов для расчёта	4	практическое занятие в	Устный опрос
площадей и объёмов.	4	форме практикума.	
Раздел 2. Линейная алгебра	16		
Практическая работа №7. Решение систем линейных уравнений методом	4	практическое занятие в	Устный опрос
Taycca.	4	форме практикума.	
Трактическая работа №8. Реализация сингулярного разложения матрицы с	4	практическое занятие в	Устный опрос
помощью вычислительных методов.	4	форме практикума.	
Практическая работа №9. Применение SVD для анализа многомерных	4	практическое занятие в	Устный опрос
цанных.	4	форме практикума.	
Трактическая работа №10. Уменьшение размерности данных с	4	практическое занятие в	Устный опрос
использованием SVD в задачах машинного обучения.	4	форме практикума.	
Раздел 3. Математические модели и их применение	18		
Трактическая работа №11. Построение линейной модели на основе	4	практическое занятие в	Устный опрос
окспериментальных данных.	4	форме практикума.	
Трактическая работа №12. Оценка параметров линейной регрессии с	4	практическое занятие в	Устный опрос
помощью метода наименьших квадратов.	4	форме практикума.	
Трактическая работа №13. Построение полиномиальной модели для	4	практическое занятие в	Устный опрос
ппроксимации данных.	4	форме практикума.	
Трактическая работа №14. Решение задач прогнозирования с помощью	6	практическое занятие в	Устный опрос
экспоненциальной и логарифмической нелинейных моделей.	U	форме практикума.	
женопенциальной и погарифмической пелипенных моделей.			

4.3.3. Самостоятельная работа

Таблица 5 – Самостоятельная работа

№ п/п	Тема	Кол-во часов	Оценочное средство
1.	Подготовка к экзамену	4	Экзамен
	Всего	4	

5. Перечень образовательных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, современных профессиональных баз данных и информационных справочных систем

5.1. Образовательные технологии

При реализации различных видов учебной работы по дисциплине «Элементы высшей математики» используются следующие образовательные технологии:

- технологии проблемного обучения: проблемная лекция, практическое занятие в форме практикума.
 - информационно-коммуникативные образовательные технологии: лекция-визуализация.
- инновационные методы, которые предполагают применение информационных образовательных технологий, а также учебно-методических материалов, соответствующих современному мировому уровню, в процессе преподавания дисциплины:
 - использование медиаресурсов, энциклопедий, электронных библиотек и Интернет;
 - консультирование студентов с использованием электронной почты;
- использование программно-педагогических тестовых заданий для проверки знаний обучающихся.

5.2. Лицензионное программное обеспечение

В образовательном процессе при изучении дисциплины используется следующее лицензионное программное обеспечение:

1.Лицензии Microsoft Open License (Value) Academic.

Включают продукты Microsoft Office и Microsoft Windows для компьютерных лабораторий и сотрудников института:

- программный продукт Office Home and Business 2016 2шт (товарная накладная TN000011138 от 01.10.19);
- электронная лицензия 02558535ZZE2106 дата выдачи первоначальной лицензии 21.06.2019 (товарная накладная TN000006340 от 03.07.19);
 - 93074333ZZE1602 дата выдачи первоначальной лицензии 21.05.2015;
 - 69578000ZZE1401 дата выдачи первоначальной лицензии 19.01.2012;
 - 69578000ZZE1401 дата выдачи первоначальной лицензии 30.11.2009;
 - 66190326ZZE1111 дата выдачи первоначальной лицензии 30.11.2009;
 - 62445636ZZE0907 дата выдачи первоначальной лицензии 12.07.2007;
 - 61552755ZZE0812 дата выдачи первоначальной лицензии 27.12.2006;
 - 60804292ZZE0807 дата выдачи первоначальной лицензии 06.07.2006.
- 2. Лицензионное соглашение 9334508 1С: Предприятие 8. Комплект для обучения в высших и средних учебных заведениях:
 - Управление производственным предприятием;
 - Управление торговлей;
 - Зарплата и Управление Персоналом;
 - Бухгалтерия.
- 3.Сублицензионный договор №016/220823/006 от 22.08.2023. Неисключительные права на использование программных продуктов «1С: Комплект поддержки» 1С: КП базовый 12 мес. (основной продукт «1С: Предприятие 8. Комплект для обучения в высших и средних учебных заведениях» рег. номер 9334508).
- 4.Договор №ИП20-92 от 01.03.2020 об информационной поддержке и обеспечения доступа к информационным ресурсам Сети Консультант Плюс в объеме комплекта Систем Справочно Правовой Системы Консультант Плюс (число ОД 50).
- 5.Лицензия 1C1C-240118-105136-523-1918 Kaspersky Endpoint Security для бизнеса Стандартный Russian Edition. 50-99 Node 1 year Educational Renewal License (80 Users до 11.04.2025).
- 6.Лицензия №54736 на право использования программного продукта «Система тестирования INDIGO» (бессрочная академическая на 30 подключений от 07.09.2018).

7. Договор с ООО «СкайДНС» Ю-04056/1 на оказание услуг контент-фильтрации сроком 12 месяцев от 10 января 2025 года.

5.3. Современные профессиональные базы данных

В образовательном процессе при изучении дисциплины используются следующие современные профессиональные базы данных:

Электронно-библиотечная система «Университетская Библиотека Онлайн» - https://biblioclub.ru/.

Образовательная платформа «Юрайт» - https://www.urait.ru/

Научная электронная библиотека - www.elibrary.ru.

Реферативная и справочная база данных рецензируемой литературы Scopus - https://www.scopus.com.

Политематическая реферативно-библиографическая и наукометрическая (библиометрическая) база данных Web of Science - https://apps.webofknowledge.com

Архив научных журналов НП Национальный Электронно-Информационный Консорциум (НЭИКОН) (arch.neicon.ru)

Научная библиотека открытого доступа - https://cyberleninka.ru

5.4. Информационные справочные системы

Изучение дисциплины сопровождается применением информационных справочных систем:

1. Справочная информационно-правовая система «КонсультантПлюс» (договор № ИП20-92 от 01.03.2020).

6. Оценочные средства и методические материалы по итогам освоения дисциплины

При разработке оценочных средств преподавателем используются базы данных педагогических измерительных материалов, предоставленных ООО «Научно-исследовательский институт мониторинга качества образования».

Типовые задания, база тестов и иные материалы, необходимые для оценки результатов освоения дисциплины (в т.ч. в процессе ее освоения), а также методические материалы, определяющие процедуры этой оценки приводятся в приложении 1 к рабочей программе дисциплины.

Универсальная система оценивания результатов обучения выполняется в соответствии с Положением о формах, периодичности и порядке проведения текущего контроля успеваемости и промежуточной аттестации обучающихся в АНПОО «ККУ», утвержденным приказом директора от 03.02.2020 г. № 31 о/д и включает в себя системы оценок:

- 1) «отлично», «хорошо», «удовлетворительно», «неудовлетворительно»;
- 2) «зачтено», «не зачтено».

7. Основная и дополнительная учебной литература и электронные образовательные ресурсы, необходимые для освоения дисциплины

7.1. Основная учебная литература

- 1. Высшая математика : учебник и практикум для среднего профессионального образования / под общей редакцией М. Б. Хрипуновой, И. И. Цыганок. Москва : Издательство Юрайт, 2025. 472 с. (Профессиональное образование). ISBN 978-5-534-01497-6. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/562365
- 2. Кашапова, Ф. Р. Высшая математика. Общая алгебра в задачах : учебник для среднего профессионального образования / Ф. Р. Кашапова, И. А. Кашапов, Т. Н. Фоменко. 2-е изд., перераб. и доп. Москва : Издательство Юрайт, 2025. 128 с. (Профессиональное образование). ISBN 978-5-534-11363-1. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/563750
- 3. *Фоменко, Т. Н.* Высшая математика. Общая алгебра. Элементы тензорной алгебры: учебник и практикум для среднего профессионального образования / Т. Н. Фоменко. Москва: Издательство Юрайт, 2025. 121 с. (Профессиональное

образование). — ISBN 978-5-534-08098-8. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/563749

7.2. Дополнительные источники

- 1. Бугров, Я. С. Высшая математика в 3 т. Т. 1. Дифференциальное и интегральное исчисление в 2 кн. Книга 1 : учебник для вузов / Я. С. Бугров, С. М. Никольский. 7-е изд., стер. Москва : Издательство Юрайт, 2025. 253 с. (Высшее образование). ISBN 978-5-534-02148-6. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/562135
- 2. Бугров, Я. С. Высшая математика. Задачник : учебное пособие для вузов / Я. С. Бугров, С. М. Никольский. Москва : Издательство Юрайт, 2025. 192 с. (Высшее образование). ISBN 978-5-9916-7568-0. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/560816
- 3. Вечтомов, Е. М. Математика: логика, теория множеств и комбинаторика: учебник для среднего профессионального образования / Е. М. Вечтомов, Д. В. Широков. 2-е изд. Москва: Издательство Юрайт, 2025. 176 с. (Профессиональное образование). ISBN 978-5-534-20661-6. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/564300
- 4. Даурцева, Н. А. Математика. Комплексные числа: учебник для среднего профессионального образования / Н. А. Даурцева. Москва: Издательство Юрайт, 2025. 79 с. (Профессиональное образование). ISBN 978-5-534-20015-7. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/569215

7.3. Электронные образовательные ресурсы

- 1. Коллекция Федерального центра информационно-образовательных ресурсов ФЦИОР: http://fcior.edu.ru/
 - 2. Единая коллекция цифровых образовательных ресурсов: http://schoolcollection.edu.ru.
- 3. Федеральный образовательный портал Экономика, Социология, Менеджмент http://ecsocman.hse.ru
 - 4. Единое окно доступа к образовательным ресурсам: http://window.edu.ru/
- 5. Национальный центр информационного противодействия терроризму и экстремизму в образовательной среде и сети Интернет http://ncpti.su/

8. Дополнительные ресурсы информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 1. СПС «Консультант-плюс» www.consultant.ru.
- 2. Электронно-библиотечная система «Университетская Библиотека Онлайн» https://biblioclub.ru/.
 - 3. Научная электронная библиотека www.elibrary.ru.
 - 4. ООО «Электронное издательство Юрайт» www.urait.ru.

9. Требования к минимальному материально-техническому обеспечению, необходимого для осуществления образовательного процесса по дисциплине

Для изучения дисциплины используется любая мультимедийная аудитория. Мультимедийная аудитория оснащена современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов.

Типовая комплектация мультимедийной аудитории состоит из:

мультимедийного проектора,

проекционного экрана,

акустической системы,

персонального компьютера (с техническими характеристиками не ниже: процессор не ниже 1.6.GHz, оперативная память – 1 Gb, интерфейсы подключения: USB, audio, VGA.

Преподаватель имеет возможность легко управлять всей системой, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть «Интернет».

Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Для проведения занятий лекционного типа предлагаются наборы демонстрационного оборудования и учебно-наглядных пособий, обеспечивающие тематические иллюстрации, соответствующие рабочей учебной программе дисциплин.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечены доступом в электронную информационно-образовательную среду Колледжа.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе «Университетская библиотека ONLINE», доступ к которой предоставлен обучающимся. Электронно-библиотечная система «Университетская библиотека ONLINE» реализует легальное хранение, распространение и защиту цифрового контента учебно-методической литературы для вузов с условием обязательного соблюдения авторских и смежных прав. Электронно-библиотечная система «Университетская библиотека ONLINE» обеспечивает широкий законный доступ к необходимым для образовательного процесса изданиям с использованием инновационных технологий и соответствует всем требованиям ФГОС СПО.

Приложение 1 к рабочей программе дисциплины «Элементы высшей математики» (ОП.01)

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ ВХОДНОГО, ТЕКУЩЕГО, РУБЕЖНОГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ И МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ПО ЕЕ ОСВОЕНИЮ

ЭЛЕМЕНТЫ ВЫСШЕЙ МАТЕМАТИКИ (ОП.01)

По специальности 09.02.13 «Интеграция решений с применением

технологий искусственного интеллекта»

Квалификация «Специалист по работе с искусственным

интеллектом»

Форма обучения очная

6.1. Оценочные средства по итогам освоения дисциплины

6.1.1. Цель оценочных средств

Целью оценочных средств является установление соответствия уровня подготовленности обучающегося на данном этапе обучения требованиям рабочей программы по дисциплине «Элементы высшей математики».

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Элементы высшей математики». Перечень видов оценочных средств соответствует рабочей программе дисциплины.

Комплект оценочных средств включает контрольные материалы для проведения всех видов контроля в форме устного и письменного опроса, практических занятий, и промежуточной аттестации в форме вопросов и заданий к зачету с оценкой.

Структура и содержание заданий — задания разработаны в соответствии с рабочей программой дисциплины «Элементы высшей математики».

6.1.2. Объекты оценивания – результаты освоения дисциплины

Объектом оценивания являются формируемые компетенции ОК 01, ОК 02.

Результатами освоения дисциплины являются:

уметь:

- применять современный математический инструментарий для решения практических задач;
- применять методику построения и анализа математических моделей для оценки состояния явлений и процессов в части математического анализа, линейной алгебры;

знять

основы математического анализа, линейной алгебры и аналитической геометрии.

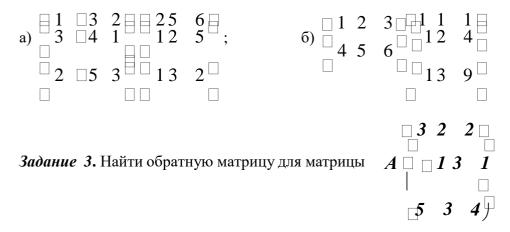
6.1.3. Формы контроля и оценки результатов освоения

Контроль и оценка результатов освоения — это выявление, измерение и оценивание знаний и умений формирующихся компетенций в рамках освоения дисциплины. В соответствии с учебным планом и рабочей программой дисциплины «Элементы высшей математики» предусматривается входной, текущий, рубежный и промежуточный контроль результатов освоения (промежуточная аттестация в форме экзамена).

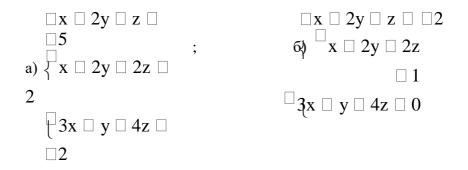
6.1.4. Примерные (типовые) контрольные задания или иные материалы, необходимые для оценки знаний, умений, владений (или опыта деятельности), в процессе освоения дисциплины характеризующих этапы формирования компетенций в процессе освоения дисциплины Контрольно-измерительные материалы для текущего контроля по учебной дисциплине

Вопросы для проведения экзамена

- 1. Матрицы, действия над матрицами.
- 2. Определители 1-го, 2-го, 3-го порядков. Правило треугольников.
- 3. Определители п-го порядка. Теорема Лапласа.
- 4. Обратная матрица. Алгоритм нахождения обратной матрицы.
- 5. Система линейных уравнений. Формулы Крамера. Метод Гаусса.
- 7. Предел функции в точке. Основные теоремы о пределах.
- 8. Предел функции при х, стремящемся к бесконечности. Замечательные пределы. Число е.
- 9. Непрерывность функции в точке и на промежутке. Точка непрерывности функции. Точка разрыва функции. Свойства непрерывных функций. Приращение аргумента. Приращение функции.
- 10. Производная функции. Дифференциал функции. Геометрический смысл производной. Механический смысл производной.
- 11. Таблица производных. Понятие сложной функции. Производная сложной функции.

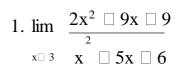

- 12. Схема исследования функции. Область определения функции. Множество значений функции. Четность и нечетность функции. Нули функции. Промежутки знакопостоянства функции. Возрастание и убывание функции, правило нахождения промежутков монотонности. Точки экстремума функции, правило нахождения экстремумов функции.
- 13. Производные высших порядков. Физический смысл второй производной. Исследование функции с помощью второй производной.
- 14. Первообразная. Неопределенный интеграл. Основные свойства неопределенного интеграла.
 - 15. Таблица неопределенных интегралов.
- 16. Методы интегрирования: метод непосредственного интегрирования; метод замены переменной (метод подстановки); метод интегрирования по частям.
- 17. Определенный интеграл. Понятие интегральной суммы. Достаточное условие существования определенного интеграла (интегрируемости функции).
- 18. Основные свойства определенного интеграла. Геометрический смысл определенного интеграла. Методы вычисления определенных интегралов. Формула Ньютона-Лейбница.
 - 19. Геометрические и физические приложения определенного интеграла.
 - 20. Понятие события и его виды. Операции над событиями.
 - 21. Понятие вероятности. Теоремы сложения и вычитания вероятностей.
 - 22. Формула полной вероятности. Схема независимых событий. Формула Бернулли.
 - 23. Основные задачи и понятия математической статистики.
- 24. Определение выборки и выборочного распределения. Графическое изображение выборки.
 - 25. Определение понятия полигона и гистограммы. Статистическое распределение.
- 26. Оценка параметров генеральной совокупности по её выборке. Интервальная оценка. Доверительный интервал и доверительная вероятность.
- 27. Процент. Нахождение процента от числа; числа по его процентам; процентное отношение двух чисел. Формулы простых и сложных процентов.

Примерные задачи практического характера:


Задание 1. Вычислить определители:

a)
$$\begin{vmatrix} 2 & \Box 1 & 7 \\ 4 & 3 & \Box 5 \\ \Box 6 & \Box 4 & 3 \end{vmatrix}$$

Задание 2. Умножить матрицы:



Задание 4. Решить системы матричным способом и по формулам Крамера:

Задание 5. Решить системы методом Гаусса:

Задание 6. Вычислить пределы функции:

$$2 \lim_{x \to 0} \frac{3x}{\sqrt{5+x} - \sqrt{5-x}}$$

1.
$$\lim_{x \to 0} \frac{2x^5 \Box 7x^3 \Box 4}{6x^5 \Box 3x^2 \Box 2}$$

$$2. \lim_{x = 0} \frac{\sin 3x}{x \, tg 2x}$$

3.
$$\lim_{x \to 0} \frac{1}{x} = 5^{6 - 4x}$$

Задание 7. Найти производную функций:

1.
$$y \qquad \Box \qquad \Box \qquad 4x \Box 5$$

$$2. \qquad y \qquad \frac{8}{\sqrt[4]{x}} \, \Box \frac{6}{\sqrt[3]{x}}$$

3.
$$y x^2 ctgx$$

3.
$$y \quad x^2 ctgx$$
4. $y \quad \frac{x^2}{x^2 \quad \Box \quad 1}$

5.
$$f(x) = \frac{\cos x}{1 - \sin x}$$

6.
$$y \square \ln(x^3 \square 7x \square 2)$$

7.
$$y \square \ln(arctgx)$$

8.
$$y \square e^{\arcsin x}$$

9.
$$y \square \sin^3 x$$

$$y \Box \sqrt{1-x^2} \arcsin x$$

 $y \square \frac{(x \square 1)^2}{x^2 \square 1}$ Задание 8. Исследовать функцию и построить график:

Задание 9. Найти наибольшее и наименьшее значение функции $y \Box 3 \Box x \frac{4}{(x \Box 2)^2}$, заданной на отрезке $\square \square 1;2 \square$.

Задание 10. Решить комбинаторные задачи:

1. Вычислить:

a).
$$C_5^3 + C_6^4$$
: A_5^1 ; 6). $\tilde{P}_8(3; 2; 5; 4)$

6).
$$\tilde{P}_8(3; 2; 5; 4)$$

- 2. Сколькими способами можно сделать флаг из трех горизонтальных полос различных цветов, если есть материя пяти различных цветов?
- 3. Сколькими способами из колоды в 52 карты можно вынуть 10 карт?
- 4. На сортировочной станции стоит группа из пяти вагонов пяти назначений. Сколько возможностей существует разместить по этим назначениям вагоны?

Задание 11. Решить задачу:

- 1. В урне 7 белых и 5 красных шаров. Какова вероятность того, что среди наудачу вынутых 6 шаров будет 4 белых и 2 красных?
- 2. Три стрелка сделали по одному выстрелу в мишень. Какова вероятность того, что в мишень попали ровно две пули, если вероятность попадания каждым стрелком соответственно равна 0,5; 0,7; 0,8?
- 3.30% изделий, поступающих в магазин, изготовлено в ателье №1, остальные изготовлены на швейных фабриках. Вероятность быть изделием высокого качества для изделия, изготовленного в ателье, равна 0,9, для остальных 0,8. Какова вероятность, что купленное изделие отличного качества изготовлено в ателье №1?
- 4. Через сортировочную горку в сутки проходит 6000 вагонов. Частота появления вагонов назначения №1 равна 0,2. Сколько вагонов назначения №1 в сутки проходит в среднем через сортировочную горку?

Задание 12. Вычислить неопределенные интегралы:

1)
$$\prod x^3 dx$$
,

7)
$$\sqrt{5} x^4 dx$$
,

2).
$$\Box \frac{dx}{\sqrt[3]{x^2}}$$
,

8)
$$\Box 10xdx$$
,

$$3)\int \Box \frac{dx}{3}$$
.

9)
$$\square (2x^2 \square 3x \square 7)dx$$
,

6)
$$\square^{x} = \frac{1}{1 \square} dx$$
, 12) $\square (\frac{3}{\sqrt{1-x^2}} \square 7\cos x) dx$.

Задание 13. Вычислить определенный интеграл:

$$\int (5x^4 - \frac{3}{x^2} - \frac{2}{x^3 \sqrt{x}} + 9\sqrt[7]{x^2}) dx$$

$$\int \cos(7x+1)dx$$

Задание 14. Найти площадь фигуры, ограниченной линиями:

 $y \square f(x) \square (x \square 1)^2 \square 1, x \square \square 1, x \square 2$

Критерии оценки промежуточной аттестации в виде экзамена:

- оценка «отлично» выставляется студенту, если студент демонстрирует: знание фактического материала, усвоение общих представлений, понятий, идей; полную степень обоснованности аргументов и обобщений, всесторонность раскрытия темы; наличие знаний интегрированного характера, способность к обобщению; устную и письменную культуру в ответе и оформлении. Соблюдает логичность и последовательность изложения материала. Использует корректную аргументацию и систему доказательств, достоверные примеры, иллюстративный материал, литературные источники;
- оценка «хорошо» выставляется студенту, если студент демонстрирует: знание фактического материала, усвоение общих представлений; достаточную степень обоснованности аргументов и обобщений; способность к обобщению, устную и письменную культуру в ответе и оформлении. Соблюдает логичность и последовательность изложения материала. Использует достоверные примеры, иллюстративный материал;
- оценка «удовлетворительно» выставляется студенту, если студент демонстрирует: недостаточное знание фактического материала; неполную степень обоснованности аргументов и обобщений. Нарушает устную и письменную культуру в ответе и оформлении. Соблюдает логичность и последовательность изложения материала. Использует достоверные примеры;
- оценка «неудовлетворительно» выставляется студенту, если студент демонстрирует: незнание фактического материала; неполную степень обоснованности аргументов и обобщений. Не соблюдает логичность и последовательность изложения материала, устную и письменную культуру в ответе и оформлении. Использует недостоверные примеры.

6.2. Методические рекомендации и указания

6.2.1. Методические указания для обучающихся по освоению учебной дисциплины

Специфика изучения учебной дисциплины ОП.01 «Элементы высшей математики» обусловлена формой обучения студентов, ее местом в подготовке специалиста среднего звена и временем, отведенным на освоение учебной дисциплины рабочим учебным планом.

Процесс обучения делится на время, отведенное для занятий, проводимых в аудиторной форме (лекции, практические занятия) и время, выделенное на внеаудиторное освоение учебной дисциплины, в том числе и на самостоятельную работу студента.

Лекционная часть учебного курса для студентов проводится в форме обзоров по основным темам. Практические занятия предусмотрены для закрепления теоретических знаний, углубленного рассмотрения наиболее сложных проблем учебной дисциплины, выработки навыков структурно-логического построения учебного материала и отработки навыков самостоятельной подготовки.

Самостоятельная работа студента включает в себя изучение теоретического материала, выполнение практических заданий, подготовку к контрольно-обобщающим мероприятиям.

Для освоения учебной дисциплины студенты должны:

– изучить материал лекционных и практических занятий в полном объеме по разделам учебной дисциплины;

- выполнить задание, отведенное на самостоятельную работу: подготовить и защитить реферат по утвержденной преподавателем теме;
- продемонстрировать сформированность компетенций, закрепленных за учебной дисциплиной во время мероприятий текущего и промежуточного контроля знаний.

Посещение лекционных и практических занятий для студентов является обязательным. Уважительными причинами пропуска аудиторных занятий является:

- освобождение от занятий по причине болезни, выданное медицинским учреждением,
- распоряжение по деканату, приказ по вузу об освобождении в связи с участием в внутривузовских, межвузовских и пр. мероприятиях,
- официально оформленное свободное посещение занятий. Пропуски отрабатываются независимо от их причины.

Пропущенные темы лекционных занятий должны быть законспектированы в тетради для лекций, конспект представляется преподавателю для ликвидации пропуска. Пропущенные практические занятия отрабатываются в виде устной защиты практического занятия во время консультаций по дисциплине.

Контроль сформированности компетенций в течение семестра проводится в форме устного опроса на практических занятиях, тестового контроля, выполнения заданий для самостоятельной работы и выполнения контрольных работ по теоретическому курсу дисциплины.

6.2.2. Методические рекомендации по выполнению самостоятельной работы студентов

Специфика изучения учебной дисциплины ОП.01 Элементы высшей математики обусловлена формой обучения студентов, ее местом в подготовке специалиста среднего звена и временем, отведенным на освоение учебной дисциплины рабочим учебным планом.

Процесс обучения делится на время, отведенное для занятий, проводимых в аудиторной форме (лекции, практические занятия) и время, выделенное на внеаудиторное освоение учебной дисциплины, в том числе и на самостоятельную работу студента.

Лекционная часть учебного курса для студентов проводится в форме обзоров по основным темам. Практические занятия предусмотрены для закрепления теоретических знаний, углубленного рассмотрения наиболее сложных проблем учебной дисциплины, выработки навыков структурно-логического построения учебного материала и отработки навыков самостоятельной подготовки.

Самостоятельная работа студента включает в себя изучение теоретического материала, выполнение практических заданий, подготовку к контрольно-обобщающим мероприятиям.

Для освоения учебной дисциплины студенты должны:

- изучить материал лекционных и практических занятий в полном объеме по разделам учебной дисциплины;
 - выполнить задание, отведенное на самостоятельную работу;
- продемонстрировать сформированность компетенций, закрепленных за учебной дисциплиной во время мероприятий текущего и промежуточного контроля знаний.

Посещение лекционных и практических занятий для студентов является обязательным. Уважительными причинами пропуска аудиторных занятий является:

- освобождение от занятий по причине болезни, выданное медицинским учреждением,
- по распоряжению декана, приказ по вузу об освобождении в связи с участием в внутривузовских, межвузовских и пр. мероприятиях,
- официально оформленное свободное посещение занятий. Пропуски отрабатываются независимо от их причины.

Пропущенные темы лекционных занятий должны быть законспектированы в тетради для лекций, конспект представляется преподавателю для ликвидации пропуска. Пропущенные практические занятия отрабатываются в виде устной защиты практического занятия во время

консультаций по дисциплине.

Контроль сформированности компетенций в течение семестра проводится в форме устного опроса на практических занятиях, контроля практических работ, выполнения заданий для самостоятельной работы